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Liquids and amorphous solids simultaneously exhibit both viscous and elastic properties 
and are separated only by a quantitative difference characterized by relaxation time [1-4]. 
Thus, the behavior of a substance in the liquid and amorphous (glassy) state can be described 
by the same equations. At high and low temperatures, these equations become the equations 
of hydrodynamics and the theory of elasticity of anisotropic bodies, respectively [3]. The 
need for such equations has recently been increasing in connection with the development of 
methods of using ultrafast quenching from a melt to obtain new amorphous materials - especial- 
ly amorphous metals [5, 6] - whose mechanical, magnetic, and other properties are to a large 
extent determined by viscoelastic processes occurring during their formation [6-8]. Maxwell 
was the first to propose equations to simultaneously describe the viscous and elastic be- 
havior of a liquid for uniform shear deformation [2, 3]. Maxwell's theory was subsequently 
generalized in [3, 7-10] in the case of simple amorphous solids and liquids. 

Here, we generalize the equations of hydrodynamics of a liquid and the theory of elasti- 
city of isotropic bodies for arbitrary motion and a change in the temperature of the visco- 
elastic material. The equations are generalized without separating motion into purely shear 
and dilatational components. The resulting equations uniquely describe basic features of 
the viscoelastic behavior of ordinary liquids and amorphous solids, as well as the kinetics 
of the transformation of supercooled liquids to the glassy state with a decrease in tempera- 
ture. The equations are solved for a uniform change in the volume of the liquid under the 
influence of the changing temperature in the region of the glass point and the propagation 
of an elastic transverse wave into a semiinfinite viscoelastic material. 

We will examine the deformation of a liquid in which the strain tensor can be represen- 
ted in the form Uik = (Sui/Sx k + 8Uk/3Xi)/2 (u is the strain vector). The given strain de- 
pends on the elastic change in the distance between atoms, characterized by the parameter 
~, and on rearrangement of the liquid atoms. The deformation of the liquid will be character- 
ized by the parameter ~ (if some of the strains cannot be described by one parameter, then 
the corresponding quantity should be regarded as representing the aggregate of the necessary 
parameters). 

Thus we assume that the strain tensor Uik is a function of the variables ~ and ~. These 
variables can be formally regarded as being independent of each other. At the same time, 
each is a function of time. Thus, the tensor of strain rate Vik = (Svi/Sx k + 8Vk/3Xi)/2 

is the strain-rate vector) can be represented in the form 

duih I t . du~, d~i~ ~ - -  = vi~ + v~k, ( 1 )  
~i~ d t  - -  -d~ I~=const d t  I~=const 

where Vik' corresponds to the elastic strain-rate tensor; Vik" is connected with restructuring 
of the liquid and thus corresponds to the viscous strain-rate tensor. This is equivalent 
to combining viscous and elastic strain, in accordance with Maxwell. Such a combination 
was used in [3, 9] for nondiagonal components of the tensors Uik and Vik and their deviators. 
We will assume, in accordance with previous discussions, that Eq. (i) is valid for all compo- 
nents of the tensor Vik. 

Let us examine the motion of a viscoelastic substance. The general equation of continu- 
um mechanics has the form [ii] 
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diui dg~ Ooik 
. . . . .  +f i .  (2)  9~7~ ::P dt Ox h 

Here ,  p i s  t h e  d e n s i t y  o f  t h e  m a t e r i a l ;  f i  i s  a component  o f  t h e  v e c t o r  o f  t h e  body f o r c e ;  
Oik i s  t h e  s t r e s s  t e n s o r .  E q u a t i o n  (2)  i s  u s u a l l y  augmented  by t h e  c o n t i n u i t y  e q u a t i o n  

O9/Ot + div pv = 0. (3)  

We assume t h a t  t h e  s t r e s s e s  a c t i n g  on t h e  s u b s t a n c e  a r e  n o t  v e r y  g r e a t .  I n  t h i s  c a s e ,  
H o o k e ' s  law i s  s a t i s f i e d  f o r  e l a s t i c  d e f o r m a t i o n .  I n  t h e  t h e o r y  o f  e l a s t i c i t y ,  w i t h  a l l o w -  
ance  f o r  a t e m p e r a t u r e  change  [ 1 1 ] ,  t h e  s t r e s s  t e n s o r  o f  an i s o t r o p i c  body has  t h e  form 

~ ,  --k'~'(t Yo) Si~--i-  ' ' ' ' ' '  o ' ' := -- 23I uik-~ L uH6i;~-[-~ v~6i~-l--.~].~v~,, (4) 

where  L'  and M' a r e  t h e  Lam~ c o n s t a n t s ;  T o i s  t h e  i n i t i a l  t e m p e r a t u r e ;  k '  = L'  + 2M'/3 i s  
t h e  bu lk  c o m p r e s s i o n  modulus ;  ~' i s  t h e  c o e f f i c i e n t  o f  c u b i c a l  e x p a n s i o n  of  g l a s s ;  ~ '  and 
qs' are coefficients characterizing the bulk and shear viscosity (internal friction) of the 
substance as a solid [ii, p. 781]. 

The stress tensor of a viscous compressible liquid [ii] 

~-- ~ vnS~,-}.-2~v~ (5)  

(p~ is pressure; ~" and qs" are coefficients characterizing the bulk and shear viscosity 
of the liquid). To obtain equations linking the stress and strain-rate tensors of a visco- 
elastic material, we combine Eqs. (4) and (5) in accordance with Eq. (i). To do this, we 
find from (5) that 

"ms 2~1~ 3%,, 7 . ,,-7~.. , ,  - ~ ( 6 )  

We then differentiate (4) with respect to time. For most actual processes, an insigni- 
ficant role is played by the last two terms in this equation - which account for the fact 
that the process occurs at a finite rate. Thus, we will henceforth ignore them. It should 
be noted that allowing for them only leads to somewhat more complicated formulas. The coef- 
ficients L', M', and ~' change relatively slightly in relation to temperature and pressure. 
We will therefore consider them to be independent of time. As a result, 

d %  -- ~'B' ~ r  ' " 0 ~'v' ( 7 )  

Replacing Vik' in (7) by Vik - Vik" and replacing Vik" by its value from (6), we obtain a 
system of differential equations to connect the tensors Oik and Vik: 

da~k --k'~ 'dT L*( al1+3P~)da 
d--F= 7 f ~ +  vn a ~ + ~ :  (8) 

+ 2M'  vi~ 2~ 2~ s 2~ j 

Sys tem ( 2 ) ,  ( 3 ) ,  (8)  i s  composed o f  t e n  i n d e p e n d e n t  e q u a t i o n s  ( s i n c e  e lk  = Oki , Vik = Vki)  , 
which  in  t h e  g e n e r a l  c a s e  have  t w e l v e  unknowns:  s i x  components  o f  t h e  t e n s o r  a i k ,  t h r e e  
components  o f  t h e  v e c t o r  v ,  p r e s s u r e  Pa,  d e n s i t y  p, and t e m p e r a t u r e  T. I f  i t  i s  n e c e s s a r y  
t o  d e t e r m i n e  t h e  s t r a i n ,  t h e n  t h e  s y s t e m  i s  augmented by t h e  e q u a t i o n  v = d u / d t .  Th i s  equa-  
t i o n  can be s o l v e d  in  t h e  c a s e  when t h e  p rob lem t u r n s  ou t  t o  be c l o s e d  f o r  a s p e c i f i c  c o n d i -  
t i o n .  O t h e r w i s e ,  as  in  h y d r o d y n a m i c s ,  i t  i s  n e c e s s a r y  t o  s o l v e  a r e s o l v e n t  s y s t e m  augmented 
by t h e  e n e r g y  e q u a t i o n  0 d ~ / d t  = OikVik - 8~q/3x i ( q  and 0 a r e  t h e  h e a t - f l u x  v e c t o r  and t h e  
s p e c i f i c  i n t e r n a l  e n e r g y  o f  t h e  medium),  t h e  e q u a t i o n  o f  s t a t e  o f  t h e  l i q u i d ,  e t c .  

Us ing  s y s t e m  ( 1 ) ,  ( 2 ) ,  ( 8 ) ,  we o b t a i n  t h e  f o l l o w i n g  f o r  an i n c o m p r e s s i b l e  l i q u i d  ( v l ~ '  = 
vs163 = vs163 = 0) and a c o n s t a n t  t e m p e r a t u r e  

10Pa ( 1 ) 
,, ~ p ~ -  k = w a  ( 9 )  

(72 is the Laplace operator). Equation (9) differs from the corresponding equation in [i0], 
p. 234] in the fact that it does not contain the term (i/M')[d(apa/3xi)/dt]. This is con- 
nected with the fact that here we generalized the equations of hydrodynamics and the theory 
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of elasticity in accordance with Eq. (i), while in [I0] they were generalized by replacing 
the multiplier i/ns" in the Navier-Stokes equation by the Maxwell operator i/~s" + (I/M')- 
(d/dt). The solution of system (2)-(3), (8) in the general case poses formidable difficul- 
ties, but in certain cases it can be solved easily. 

Let us examine the stress and strain distribution in a semiinfinite viscoelastic materi- 
al whose surface is acted upon by a sinusoidal shear stress Oy x = Oyx ~ exp (i~t) (with the 
y axis being directed along the surface and x being directed inside the material, where x = 
0 on the surface). We assume that p, Ns", and T are constant. We seek the solution in the 
form Oy x = Oyx ~ [i(~t - vx) - ~x], Vy = Vy ~ [i(mt - vx)- ~x] .(Oyx~ Vy ~ v, and 
are constants). In the given case, two equations in system (2)-(3), (8) are nontrivial. 
Their solution has the form 

~t, "v = - fv ]/r--~ -I-272 Ye~ , Vy~ = O_Oyx (V - -  i~O/pa) 

(~  = P(02/M', V = - -  PCO/n[)" 

With D " approaching infinity, D = 0, while v = /pmf/M ' i.e. the substance behaves 
S ' ' 

as an ideally elastic body. At Ds" approaching zero, D = v = ~pm/fns" + ~. Thus, as in 
a moving liquid, the wave decays rapidly near the surface. With a decrease in temperature, 
the viscosity of the liquid rapidly increases from small to very large values (near the glass 
point Tg), while the Lame constants change relatively slowly in relation to temperature. 
Thus, as can be seen from (i) and (6), system (2)- (3), (8) describes a viscous fluid above 
the glass point and an elastic solid (glass) below it. It should therefore reflect the pro- 
cess of vitrification of the liquid. 

Let us now examine the change in volume under the influence of temperature in the vitri- 
fication region. For a uniform change in volume, the nondiagonal components of the tensors 
Oik and Vik vanish, and Eq. (8) takes the form 

dqzl . . . .  , dT  ( 3P~+ azt)  (i0) 
d~ -- ~k p ~ -~ (3L' + 2M') vzz 3~" + 2~: " 

We w i l l  assume t h a t  b u l k  f l o w  t a k e s  p l a c e  f a i r l y  s l o w l y .  Then we can  s e t  p d v / d t  = 0 
i n  Eq. ( 2 ) ,  so  t h a t  ( h e n c e f o r t h  a s s u m i n g  [ ~ 0) 8Oik/SX k = 0 a s  w e l l .  Thus ,  t h e  d i a g o n a l  
componen t s  o f  t h e  t e n s o r  Oik a r e  i n d e p e n d e n t  o f  t h e  c o o r d i n a t e .  S i n c e  t h e y  mus t  be e q u a l  
t o  t h e  e x t e r n a l  p r e s s u r e  - p  a t  t h e  b o u n d a r y ,  we f i n d  t h a t  o v e r  t h e  e n t i r e  vo lume o1!  = o22 = 
o3s = - p .  I t  can be shown t h a t  f o r  a u n i f o r m  c h a n g e  i n  vo lume v ~ l  = d i v  v = ( l / w )  ( d w / d t )  
(w i s  t h e  vo lume o f  t h e  l i q u i d ) .  Making t h e  s u b s t i t u t i o n s  o~s = - 3 p ,  v~s = ( 1 / w ) ( d w / d t ) ,  
k '  = L '  + 2M' /3  i n  Eq. ( 1 0 ) ,  we have  

i dw , d . ~ _ _ z ,  dp P~--P,  __ ~ , dT  __% , dp  w - - w e  
w dt - -  ~ -df  q- % -dY dt w~ (11 )  

Here  •  = 1 / k '  i s  t h e  i n s t a n t a n e o u s  c o e f f i c i e n t  o f  c o m p r e s s i b i l i t y  ( t h e  c o e f f i c i e n t  o f  com- 
p r e s s i b i l i t y  o f  g l a s s ) ; ~ v " = t  ' '  + 2 n s " / 3  i s  t h e  b u l k  v i s c o s i t y  o f  t h e  l i q u i d ,  i n  t h e  l a s t  
e q u a l i t y ,  we r e p l a c e d  t h e  d i f f e r e n c e  Pa - P by w - w e by i n t r o d u c i n g  a c o e f f i c i e n t  e x p r e s s -  
i n g  t h e  s t r u c t u r a l  (due  t o  v i s c o u s  f l o w )  c o m p r e s s i b i l i t y  o f  t h e  l i q u i d  5X = X - X' = - ( w  - 
We) /w(pa  - p ) ,  where  • i s  t h e  s t a t i s t i c a l  c o e f f i c i e n t  o f  c o m p r e s s i b i l i t y  o f  t h e  l i q u i d ;  w, 
volume o f  t h e  l i q u i d  a f t e r  i t s  e l a s t i c  d e f o r m a t i o n ;  We, e q u i l i b r i u m  v a l u e  o f  vo l um e ;  and 
z = A• The c o e f f i c i e n t  o f  s t r u c t u r a l  c o m p r e s s i b i l i t y  i s  i n t r o d u c e d  b e c a u s e  t h e  t e r m  
(Pa  - P ) / ~ v "  i n  (11)  d e s c r i b e s  o n l y  v i s c o u s  f l o w  o f  t h e  l i q u i d .  

L e t  t h e  l i q u i d  be c o o l e d  a t  a c o n s t a n t  r a t e  T = d T / d t  u n d e r  c o n d i t i o n s  o f  a c o n s t a n t  
e x t e r n a l  p r e s s u r e  p = c o n s t .  I f  we c h a n g e  o v e r  t o  t h e  v a r i a b l e  T i n  Eq. ( 1 1 ) ,  t h e n  

~" ~' ~ - ~  (12) 
w dT w~T 

With a decrease in temperature, ~s" and thus x (AX changes relatively slightly with tempera- 
ture) increase from a small value to a very large value. As a result, in accordance with 
(12), at high temperatures the volume of the liquid is nearly equal to the equilibrium volume. 
At low temperatures, the volume changes (similarly to glass) in accordance with the equation 
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,v d T  = (13) 

Thus, (12) describes the transition from the supercooled liquid state to the glassy 
state. Equations (ii) and (12) reflect the main features of the vitrification of the liquid. 
Compared to existing theories of vitrification, here the proportionality of relaxation time 
and the viscosity of the liquid are a consequence rather than a postulate. The bulk and 
shear viscosities have identical or similar temperature dependences and can thus be linked 
with one another through a proportionality factor [!2]. 

However, these equations lead to a simple exponential law of change in the volume of 
the liquid with isothermal relaxation in the case of a small change in its temperature. This 
does not fully reflect the actual situation regarding relaxation of the liquid [4, 6]. Also, 
the "memory" effect is seen in glasses, this effect being manifest in a certain increase 
in the volume of glass with an increase in temperature as the glass point is approached. 
This occurs despite the fact that the equilibrium value of volume is usually smaller than 
the volume of the glass. This fact also cannot be described by the given equations. How- 
ever, the "memory" effect is small. Thus, as a first approximation, Eqs. (ii) and (12) make 
it possible to correctly describe the vitrification of a liquid. They can be used to study 
the kinetics of vitrification of rapidly-quenched amorphous metals. They also more systema- 
tically and more completely describe the vitrification of a melt than do the theories [13, 
14] used for this case, since Eqs. (ii) and (12) not only consider elastic as well as structu 
ral deformation, but also place a certain value on relaxation time. 

In deriving (8), we consider only elastic and viscous strains. However, delayed-elastic 
strain [3, 6, 15] also occurs in a liquid near the glass point Tg during shear. We will 
attempt to generalize the equations of viscoelastic motion with allowance for this type of 
strain. 

When the shear stress o12 is applied to an amorphous substance, this strain increase 
in accordance with the formula Ul2'" = (ol2/2M'")~(t) [3, 6, 15] [~(t) is a function which 
changes from zero to unity, M'" is the shear modulus associated with delayed-elastic strain). 
This strain completely disappears when the stress is removed. In experiments, it is seen 
only near Tg, since its relaxation time becomes very short above Tg and very long below Tg 
[3]. In the simplest case, it has the form [9, 3] 

cr! IM t~ 

~12 = 2 M ' u l ~  + 2Dsvl~ (14) 

(~s"' is shear viscosity associated with delayed-elastic strain). This formula makes it 
possible to satisfactorily describe experimental data on vitrification [16]. We will assume 
that along with elastic and viscous strain, delayed-elastic strain occurs analogously to 
shear for volumetric flow. Since viscous strain also behaves as delayed-elastic strain in 
this case, then two forms of delayed-elastic strain accumulate here. It is difficult to 
empirically observe them separately, but their existence can be checked by indirect means. 
As will be shown below, this hypothesis makes it possible to explain the nonexponential law 
of relaxation of the volume of a liquid and the presence of the "memory" effect in an amor- 
phous material. 

Equation (14) is analogous to (4) for the nondiagonal components of the stress tensor. 
It can be proposed that the tensor of delayed-elastic strain has a form analogous to (4): 

- -  k" ~" (T - -  To) 8i~ -~ " ' . . . .  L u~lSia + 2 M "  uik + ~"  "~ 2 . . . . .  aih = v.5~h + ~ v~h. (15) 

Here, the coefficients of elastic strain are analogous to the coefficients of Eq. (4); $"' 
is the coefficient of cubical expansion associated with delayed-elastic strain; k"' = L"' + 
2M"'/3. According to [3, 15], elastic, viscous, and delayed-elastic strain are manifest 
independently. Thus, the total strain is equal to their sum: Vik = Vik' + Vik" + Vik'" 

We will differentiate (15) with respect to time, assuming, as we did in deriving (7), 
that L"', M"' and ~"' are independent of time. At the same time, ns"' changes significantly 
with temperature [3]. Thus we will take the derivatives of Ds"' and X"' with respect to 
time. Then, in the resulting equation, we replace Vik"' by Vik - Vik' - Vik" and we replace 
Vik r and Vik" by their values from (6) and (7). This gives us an equation linking the stress 
and strain-rate tensors for a medium having viscous, elastic, and delayed-elastic properties: 

637 



a%< ~.,,, ~,, as' ( <~:" / [ ,z%/,zt -i- 3k'~'<s~'i<~t 
dt = -- o --~ 5ih ~- L "  -~- --~-[-7 Ull -- 3L'  -i- 2M'  - -  

3z," -l- 2',1:] <st ) v~,, - -  ~ L <it -t- k I:l "7i- 6~,~ - -  

3s.,' + 2M' <b, - -  t,3x" + 2',1,:'7 + 
+ ~.. a [ a%lat + 3k'~'aTldt % + 3 S , % ]  

"-~ un -- 3L' -J- 2M' ~ j Sih "~- 

+ 2~b -j/- v~k --  ~-~-, [--d]- 3L' -~- 2M' 51h - -  

]) 

(16) 

Similarly examining uniform volumetric flow for a constant external pressure, we find 
from (16) that 

k " ~ "  dT = k ' g  d ,,, 

( ll~" -= ~," + 2,77/3, g = ( i!w) (du,ldt) -- [$'dTIdt -- (p~ -- P)Iq~). 
(17) 

If we put qv"' = 0 into (17) and change over to the variable T, then 

t dm = ~ ,  _]_ ~ . ,  w - -  it' O 

w aT wTT (18 )  

Here, ~ = AX~v"; AX is the coefficient of structural (due only to viscous flow) compressi- 
bility of the liquid. 

The value of x increases with a decrease in temperature, and the last term in (18) be- 
comes negligibly small. As was noted in [3, 6, i0], the relaxation time for delayed-elastic 
strain tel = Nv"'/M"', being short at high temperatures, increases sharply with a decrease 
in temperature. This is due to an increase in nv"'. Since nv"' = %''' + 2qs"'/3, then the 
bulk viscosity associated with delayed-elastic strain exists even if %"' = 0, and it changes 
similarly to shear viscosity Ns"" Thus, since Dv" and Gv"' increase appreciably with a 
decrease in temperature, at low temperatures the volume changes in accordance with (13). 
This change reflects the conditions of Eq. (17). 

Thus a decrease in temperature should be accompanied by the freezing of two structural 
strains: viscous, which disappears with an increase in nv"; delayed-elastic, which disappears 
with an increase in Nv"'' Since delayed-elastic strain is seen at lower temperatures than 
viscous strain [3, 6, 15], then heating is evidently at first accompanied by freezing of 
delayed-elastic strain. This is followed by the freezing of viscous strain. Such a pattern 
can explain the presence of the memory effect in glass. The deviations from an exponential 
return of the volume of the liquid to the equilibrium value even in the case of small devia- 
tions from equilibrium [4, 6] can also be attributed to the presence of delayed-elastic strain 
together with viscous strain. 

Let us examine the process of relaxation of a liquid. Let the temperature of a melt 
at first "instantaneously" (T + ~) change from T I to T 2 and then stay at T = T 2. We will 
assume that the temperature change is small enough so that the change in viscosity during 
the given process can be ignored (Gv" = const, Nv"' = const). In this case, Gv"' ~ 0, so 
that in Eq. (17) we put (P - P~)/~v" = (w - w e - &Ws)/m, where �9 = AXGv", AWs = Aws ~ exp (--t/ 
~s) is that part of the volume change due to the action only of delayed-elastic strain. Here 
ms = Nv'"/k'", Aw~ ~ W e ~ ' " ( T i - - T 2 ) .  The value of Aw s is obtained from the solution of Eq. 

(15). The solution of Eq. (17) for the given two-stage process has the form 

0 (+) w(t )  = Aw~exp -- -? Au~oxp -- -;-ll" e 

(AWv ~ is the initial deviation of the volume connected only with viscous flow). Thus, relaxa- 
tion of the volume is expressed in the sum of two exponents. This can in principle explain 
the deviation of the relaxation law of the liquid from the exponential (describable by a 
single experiment) law seen empirically. 
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The presence of the thermal history of the glass, determining its structural state, 
is manifest in the following experiment [6, p. 123; 17]. At the temperature T~, the liquid 
relaxes until the specific volume of the refractive index of the glass N reaches the values 
that would exist in the equilibrium material at T~. Then the temperature changes sharply 
from T~ to T B. As a result, we see the typical pattern of residual relaxation shown in Figs. 
i and 2. These figures show the dependence of refractive index on time for boron-silicate 
glass in an experiment with a sharp change in temperature [17] (the points denote experimen- 
tal results). The solid line corresponds to Eq. (19) with N~ = 1.51584, N I = 0.00094, N 2 = 
-0.00086, x e = 75 min, Tg = 540 min from Fig.]l. The dashed line corresponds to N = N~ [N~ 
is the equilibrium value-of the property N(t) . For Fig. 2, N~ = 1.51453, N I = 0.00064, 
N 2 = -0.00064, Xe = 12 min, Xg = 96 min. 

Curves of the type shown in Figs. 1 and 2 were analyzed with the assumption that slow 
and fast relaxation processes exist in the material [17]. The relaxation equation which 
describes the process for small deviations from equilibrium was expressed in the form of 
the sum of two exponents: 

N(t)  = A ~  + [N~exp(--t /~ e) ~ N 2 e x p ( - - t / ~ )  ]/2 (19)  

(Nl, N2, Xe, and Xg are constants, with T e and Xg having the significance of relaxation times). 

Let us examine the given process, which has four stages. First the glass is in an equi- 
librium state at T~. In the first stage, there is an abrupt transition to T 2, and the sub- 
stance remains isothermally at this temperature. When the volume of the glass reaches the 
equilibrium value of volume at T~ (lying between T I and T2), the glass abruptly moves to 
T 3 and isothermal holding occurs again. We will assume that the temperature changes taking 
place are fairly small. Then, as before, qv" = const, qv"' = const, and dqv"'/dt = 0. The 
solution of Eq. (17) in this case has the form 

w(t) = ~t'3 ~ + A  [exp(--t,/~)--exp(--t/v~) ] + aexp(--t/~), (20)  

where A ~ w3,~"'T[(T 2 -- W 1)exp(-tl/xs) + (T 3 - T2)]/(~ s - ~); a = w3,~'(W 3 - W2) ; Wn, ~ is 
the equilibrium volume at T = T n (n = I, 2, 3). The value of the time t I can be calculated 
from the equation w3 ~ = w2 ~ + AWv ~ + Aws ~ s) (AWv ~ and AWs ~ are the 
changes in volume due to viscous and delayed-elastic strains with the transition from the 
temperature T~ to T 2 over an infinitely long period of time). It follows from this that re- 
laxation of the volume for the given history of the process is expressed as the sum of two 
exponents - similarly to Eq. (19). The experimental values shown in Figs. 1 and 2 are described 
by Eq. (19). Here, N I and N 2 are close in absolute value but opposite in sign [17]. This 
is consistent with Eq. (20). 

Thus, summing up the results obtained here, the Maxwell approach - making it possible 
to simultaneously describe the viscous and elastic behavior of liquids for uniform shear 
strain and generalized in [3, 7-9] to arbitrary but small strains of amorphous solids - has 
now been generalized to the arbitrary motion of a compressible viscoelastic medium with allow- 
ance for temperature change. The latter generalization was accomplished by combining the 
tensors for the rates of viscous and elastic strain without separating motion into shear 
and volumetric components. The equations that were obtained make it possible to simultane- 
ously describe the viscous and elastic behavior of ordinary liquids and amorphous solids, 
as well as the kinetics of the transformation of a liquid to the glassy state under the influ- 
ence of changing temperature. 

Analogous to the case of shear strain, we assumed that for volumetric flow as well there 
exists not only elastic and viscous strains, but also delayed-elastic strain. The use of 
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this assumption makes it possible to explain the nonexponential law of relaxation of the 
volume of a liquid and the presence of the "memory" effect in an amorphous material. 
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